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Precision medicine and machine 
learning towards the prediction 
of the outcome of potential celiac 
disease
Francesco Piccialli1, Francesco Calabrò1*, Danilo Crisci1, Salvatore Cuomo1, 
Edoardo Prezioso1, Roberta Mandile2, Riccardo Troncone2,3, Luigi Greco2,3 & 
Renata Auricchio2,3

Potential Celiac Patients (PCD) bear the Celiac Disease (CD) genetic predisposition, a significant 
production of antihuman transglutaminase antibodies, but no morphological changes in the small 
bowel mucosa. A minority of patients (17%) showed clinical symptoms and need a gluten free diet at 
time of diagnosis, while the majority progress over several years (up to a decade) without any clinical 
problem neither a progression of the small intestine mucosal damage even when they continued to 
assume gluten in their diet. Recently we developed a traditional multivariate approach to predict 
the natural history, on the base of the information at enrolment (time 0) by a discriminant analysis 
model. Still, the traditional multivariate model requires stringent assumptions that may not be 
answered in the clinical setting. Starting from a follow-up dataset available for PCD, we propose the 
application of Machine Learning (ML) methodologies to extend the analysis on available clinical data 
and to detect most influent features predicting the outcome. These features, collected at time of 
diagnosis, should be capable to classify patients who will develop duodenal atrophy from those who 
will remain potential. Four ML methods were adopted to select features predictive of the outcome; 
the feature selection procedure was indeed capable to reduce the number of overall features from 
85 to 19. ML methodologies (Random Forests, Extremely Randomized Trees, and Boosted Trees, 
Logistic Regression) were adopted, obtaining high values of accuracy: all report an accuracy above 
75%. The specificity score was always more than 75% also, with two of the considered methods over 
98%, while the best performance of sensitivity was 60%. The best model, optimized Boosted Trees, 
was able to classify PCD starting from the selected 19 features with an accuracy of 0.80, sensitivity of 
0.58 and specificity of 0.84. Finally, with this work, we are able to categorize PCD patients that can 
more likely develop overt CD using ML. ML techniques appear to be an innovative approach to predict 
the outcome of PCD, since they provide a step forward in the direction of precision medicine aimed to 
customize healthcare, medical therapies, decisions, and practices tailoring the clinical management of 
PCD children.

Abbreviations
PCD	� Potential celiac patients
CD	� Celiac disease
ML	� Machine learning
AUC​	� Area under the curve
ROC	� Receiver operating characteristics

Potential Celiac patients are characterized by genetic predisposition to celiac disease (CD), presence of CD 
specific antibodies (anti-human tissue transglutaminase antibodies and anti-endomysium) in the serum, but no 
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morphological changes in the small bowel mucosa1–7. Only a small percentage of them showed significant clinical 
symptoms (and are started on a gluten free diet at time of diagnosis), while the majority progressed over several 
years (up to a decade) without any clinical problem or a progression of the small intestinal mucosal damage even 
if they continued a gluten containing diet, on long term follow up one third of them progressed to a clear pattern 
of CD mucosal damage. The real issue was to attempt to predict, at enrolment, who was more likely to progress 
to villous atrophy disease in order to prevent clinical and histological damage related to the disease. In a previous 
paper, we developed a traditional multivariate approach to predict, on the base of the information at enrolment 
(time 0), subjects more likely to develop the full-blown disease. Overall, a discriminant analysis model allowed 
to correctly classify, at entry, 80% of the children who would not develop a flat mucosa over follow-up, whereas 
approximately 69% of those who did develop flat mucosa are correctly classified by the starting parameters1.

As discussed by Wasserstein et al. in8, making conclusions based uniquely on linear models can give unhelp-
ful information when clinical data are used. Among others, some of the well-known limitations of the linear 
models are: assumption about the distribution of the variables not controlled; non independency of the variables 
selected in the model; the models obtained, being hypothesis driven, may not respect the uncertainty about the 
biological significance of the variable selected; relative weakness of sample size leading to very large confidence 
intervals on follow up.

In this second phase, we adopted a machine learning approach to validate an innovative method to predict 
the outcome.

ML techniques were proposed to support clinical decision in studies where multiple features can affect out-
comes. Recently, several studies produced seminal papers that invite the community to use such methods9–19. 
Obermeyer, Rajkomar et al.9-11 reviewed Artificial Intelligence methods currently used in medicine, while the 
impossibility to use large amount of data without an automatic code was discussed by Schwalbe and Wahl12. Also, 
the description of the “The All of Us Research Program” in13 and the recent review on deep learning by Piccialli 
et al.14 focused on these issues. The editorial office of The Lancet Respiratory Medicine15 gave some guidelines 
for ML, as done by other authors16–18. Beam et al.19 focused on guidelines for reproducibility of results. What 
was noticed in such studies was that ML is a powerful set of tools that help the extraction of significant features 
for the prediction of outcomes. Nevertheless, because of its wide range applicability, considerable caution in the 
interpretation of models was required to produce an innovative approach to clinical data. Common pitfalls and 
roadmap for the application of ML methods in the medical domain were deeply reviewed20–23.

Many studies adopted ML techniques effectively in various clinical frameworks for the prediction of out-
comes. The main domain, where ML and other Data Analysis techniques are widely used, is cancer research 
and rheumatology, as pointed out respectively in the review by Hinkson et al.24 and Radstake et al. in25: in this 
case, also images are used to enrich the available data set. Images are also used in the detection of CD with the 
use of ML in26,27.

What is the most important feature—and maybe also the main drawback—is that the application of the ML 
techniques is model-free, data-driven, and intrinsically non-linear. ML takes advantage of all the available data, 
uses the different features known in the learning process: for example, the fields with categorical values can be 
converted into different numeric fields so that they are treated separately, without the need of ordering.

Our data set presents a temporal pattern due to the follow-up, with an increasing sparsity of the data as the 
follow-up is increased. For this reason, a ML strategy which considers the features collected at the enrolment 
allow to obtain a not increasing confidence interval for the final prediction, despite the decreasing sample size 
as the number of follow-ups increases. This provides a robust methodology, compared to the usual statistical 
parameters estimates.

In this study, we used ML for feature selection and for classification in a new condition such as CD and its 
multifactorial pathogenetic elements. Feature selection gives indications on the best predictive items in the 
dataset, while the classification result is given via threshold: it will give 1 (high risk) if the model output for a 
given value exceeds 50%, 0 otherwise.

Aims of this work was, starting from a follow-up dataset available for PCD, to apply Machine Learning (ML) 
to select most influent features and introduce predictive models to distinguish patients who developed duodenal 
atrophy from those who remained potential on a gluten containing diet.

Materials and methods
Prospective cohort features.  A prospective cohort of potential celiac disease children (340) was followed 
up from diagnosis till maximum of 12 years1. Diagnosis was confirmed when children showed at least 2 positive 
anti-transglutaminase IgA and anti-endomysium serological tests and all duodenal biopsies performed (1 from 
the bulb and 4 from distal part of the duodenum) were not atrophic, according to Marsh-Oberhuber classifica-
tion. All patients enrolled were also HLA DQ2 and/or DQ8 positive. Symptomatic children started a gluten-free 
diet at time of diagnosis. The others (280/340) continued a gluten containing diet and had clinical and serologi-
cal evaluation every 6 months and histological examination every 2 years1. 42/280 (15%) developed a flat duode-
nal mucosa during follow-up, while 89/280 (32%) became completely seronegative and 149 remained potential 
during follow-up. Risk factors associated with development of villous atrophy were investigated by log-rank test 
to compare the effect of factors on survival and a multivariate analysis was used to deal with the correlations 
among the variables considered.

The study was carried out according to the Helsinki II Declaration and was approved by the Ethical Commit-
tee of the School of Medicine of the University of Naples Federico II, Protocol n. 191/06. The present research 
involving human participants under the age of 18 years (including donors of tissue samples). Each parent (and/
or legal guardian) gave a fully informed consent to the participation of their child to the study and to the use of 
their biological samples for research purpose. The form is available on request at ’r.auricchio@unina.it’.
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The datasets analysed during the current study are available from the corresponding author on reasonable 
request.

Data cleaning and preprocessing.  Starting from the available dataset, a data cleaning and pre-process-
ing step was required. The analysed dataset contains both categorical and numerical features. Some of them 
present missing data values, however these features have still been considered either in feature reduction and 
classification tasks. In this context, results are mainly affected by the poor filling of the data and the imbalance 
of the predicted targets. Both issues can be easily explained: for the first one, the follow ups are available at dif-
ferent time lengths according to different individuals (censored data); for the second issue, the diagnosis of the 
overt CD happens in about 30% of the cases, while ML works better if the outcomes are balanced. In Figs. 1 and 
2 we reported disposable data for each time point of the follow-up and the distribution of the patients by the 

Figure 1.   A spy plot about the presence of values on the whole dataset: black indicates available data, white 
missing. The numbers on the ticks on the vertical axis indicates the follow-up months, while the ticks without 
numbers indicate the gap between two separate follow-ups. The pattern is typical of longitudinal studies: such 
distribution highlights the problem when results are produced via the classical descriptive statistical approach, 
where the model is confirmed in terms of confidence intervals and probability distributions with a quite limited 
data set. ML with tree techniques can overcome this feature using all the available data.

Figure 2.   The percentage of patients with last follow-up. Different motivations can cause the interruption of 
follow-up, such as the onset of the disease, familial and logistic problems, mobility, unavailable blood sample.
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available follow-up. In this work, the results of the clinical tests in the successive follow ups were not considered 
for two main reasons: first of all, the objective of this work is to make a prediction of the outcome at the time 
of the diagnosis of PCD; furthermore, there were not enough patients whose sequence of clinical results in the 
consecutive follow ups is consistently present.

The fields with categorical values were converted into multiple numeric fields through one-hot encoding28; 
indeed, it would make no sense to apply ordinal encoding to the ordinal categories, because they may contain 
missing data, and therefore there could be a loss of significance if the missing data would be replaced with a 
numeric value. Finally, the considered features were those at the first follow up (at time 0).

Then, ML was applied to the dataset with two aims: feature selection and supervised classification for the 
villous atrophy development prediction. In both cases, ML methodologies are characterized in general by a 
model, whose parameters are adjusted by inferring on a subset of the dataset called training set, then the good-
ness of such model is evaluated by computing a score on a disjoint set of instances called test set. Each model 
also depends on non-trainable parameters called hyperparameters that influence the prediction; it is crucial to 
find good settings for them, and this operation is called hyperparameter tuning. Regarding this point, classical 
approaches consist in evaluating a model with different hyperparameters in a subset of the dataset, disjoint from 
both the training set and the test set, called validation set. Because of too few available instances, the procedure of 
splitting the dataset into train, validation and test sets is not recommended, because there is a risk of losing the 
statistical representativity of the training set. In order to alleviate this problem, a k-fold cross validation approach 
has been used, with k = 10. More in detail, the dataset was partitioned in 10 disjoint subsets. At each iteration 
of the cross validation, 9 subsets become the training set, while the remaining subset is chosen as the valida-
tion set. Since the number of occurrences of the diagnosed CD was 30% of the total number of samples, a more 
suitable version of the tenfold cross validation, called stratified cross validation, was deployed. This guarantees 
the same percentage of the distribution of the CD targeted instances in each of the 10 subsets. Then, for each 
choice of hyperparameters on a given model, the average of the validation scores obtained on all the iterations 
of the cross validation is computed, then, finally, the best hyperparameter configuration is chosen by taking the 
configuration corresponding to the best value between such scores. The justification of using this approach is 
that the classical split into train, validation and test sets presupposes the representativity of the entire dataset 
being preserved in each subset. Unfortunately, this assumption cannot be made for our data set, given the small 
number of PCD patients. Therefore, the same dataset has been used in both feature selection and classification, 
and the hyperparameter tuning has been validated by using the discussed k-fold stratified cross validation. This 
is a general strategy which limits the overfitting phenomena29,30.

The proposed ML workflow
In Fig. 3 we present a ML workflow which briefly summarizes the computational procedure for the PCD chil-
dren categorization. The medical data are processed with a Feature Selection scheme (left gray block), then in 
the obtained reduced feature space, a Classification phase (right gray block) is used to the outcome predictions. 
In this section, we recall the ML background about the models, the feature selection and the classification28.

ML models.  For the Feature Selection scheme, the following models have been considered: (i) univariate 
analysis via chi squared and mutual information statistical tests, with validation through the Ridge classifier, (ii) 
Random Forests (RF) and Extremely Randomized Trees (ERT). For the Classification phase, we consider: (i) 
RF, (ii) ERT, (iii) Boosted Trees (BT), (iv) Logistic regression (LR). Details of the ML models are here reported:

Figure 3.   The proposed ML workflow for outcome prediction. The medical data are reduced in terms of 
features by a Feature Selection scheme (left grey box), then the predicted outcome is obtained by using ML 
models in a Classification procedure (right grey box). For abbreviations, see “ML models” section.
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•	 The Ridge classifier, used in the statistical tests, is a linear model whose coefficients are obtained by solving the 
mean squared error optimization problem with a quadratic penalization term on the coefficients multiplied 
by a hyperparameter balancing the regularization.

•	 RF is a methodology relying on averaging random versions of decision tree models to reduce the inherently 
high variance from each tree model. The construction of each tree is done by satisfying properties related to 
discrimination criteria on each tree node. For the classification, the predicted result is obtained by a majority 
vote on the statement of each decision tree and for feature selection, the importance of the model feature is 
determined by the percentage of the features that are present in the decision tree nodes.

•	 ERT is based on the ensemble of more randomly built decision trees than RF, allowing less variance, paying 
a greater bias. The weight of the important features is assessed as described for RF.

•	 BT uses the idea to fit a sequence of simple decision trees with an assigned rule. Given an underlying function 
that maps the feature space in the target space, the boosting procedure approximates it through an additive 
weighted expansions technique; this procedure produces a good fit of the predicted values. In order to reduce 
the phenomenon of overfitting, a combined bagging-boosting procedure for the least-squares fitting of addi-
tive expansions is adopted.

•	 LR is a linear model which is used to predict the outcome in a probabilistic way. More in detail, the probability 
distribution of the predicted outcome is modelled by a logistic function. In this work, we adopted a modified 
version of LR where several penalization strategies are implemented, allowing to improve the training of the 
model through the optimization.

Feature selection scheme.  We detail the feature selection block in Fig. 3. Given a data set, the objective is 
to extrapolate a subset of the features which are most representative. This methodology has a double significance: 
in the context of clinical diagnosis, it allows to detect risk factors; in the context of ML, it is a way to alleviate the 
problem of the curse of dimensionality, where the dimensionality of the features is numerically comparable to 
the dimensionality of the samples. Since the number of samples is relatively low, a procedure of cross validation 
has been used to validate the choice of the features. More in detail, given the 10 splits of the cross validation, 
at each step the feature importance of the trained model is computed; then, for each model, the average of the 
feature importance in the whole cross validation procedure is considered. Finally, we reordered the features 
according to the sum of the feature importances from the four considered models. In conclusion, the reduced 
feature space is obtained so that the cumulative importance value (CIV), with respect to the overall sum, reached 
the value of 75%.

This approach can be justified as follows. Since a single Feature selection model is not able to extract the whole 
set of complex relationships between our data, an ensemble of the four methods is considered to enhance the 
generalization of the best feature detection process. Furthermore, the CIV criteria are used because it has the 
advantage of not choosing aprioristically the cardinality of the best features set, but rather to adaptively determine 
it depending on the magnitude of the feature importance obtained.

Classification phase.  The reduced feature space is processed in a classification phase. Indeed, the attempt 
to classify, at enrolment (time 0), who was more likely to progress to villous atrophy can be treated as a binary 
classification problem. For each ML model Λ in Fig.  3 (with Λ = Logistic, RFR, ERT, BT), an optimization 
through the hyperparameter tuning is done, as previously described, in order to generate the optimized model 
MΛ. MΛ that has been used for the prediction of the final outcome. The results of the classification were validated 
through a tenfold cross validation.

The models that have been considered for this type of problem are those based on tree methodologies: Ran-
dom Forest, Extremely Randomized Trees, and Boosted Trees. The Boosted Trees method, unlike the other two, 
is based on the progressive training of trees in a sequential way, i.e. a tree was trained starting from the previ-
ously trained tree through gradient boosting. This approach was considered to confirm that selected features 
have powerful predicting efforts.

In this work, the classification problem can hardly be seen as a regression problem, since the label had only 
two values. Linear logistic regression was used in this report. The goal was to find linear coefficients such that the 
logistic distribution obtained from the linear combination of the features with these coefficients can approximate 
the output to a correct prediction.

Results
As far as the feature selection is concerned, univariate analysis allowed to select only the features that satisfy 
hypothetical statistical tests, hence chi-square tests and mutual information were chosen. The most relevant 
features were obtained by a grid search strategy by ranking the number K of the selected features from 10 to 30. 
The adopted grid search criterion was the maximum of the cross-validated AUC score by training a Ridge clas-
sifier with the regularization strength equal to 0.01. The optimal value for the number of features was found to 
be 15 for the Chi-square test and 19 for the mutual information test. Results obtained for the top 34 features are 
reported in Fig. 4, while the description of such features is summarized in Table 1. Figure 4 shows the values via 
the cumulative weight of each variable giving the relevance of features, where the one hot encoding is applied 
to categorical ones.

According to the threshold set to 75% of CIV, 19 features were chosen, denoted by F1–F19 (see Table 1). In 
Fig. 5 the contribution of the selected features to the four models is shown.

It can be noted that the selected features include mainly features of the child (age, age at biopsy), his genetic 
profile and data related to the infiltration of the Small Intestinal Mucosa (including mucosal production of anti-
tTG2 antibodies) at time 0.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5683  | https://doi.org/10.1038/s41598-021-84951-x

www.nature.com/scientificreports/

The validation of the model was given in terms of accuracy, sensitivity, specificity. Then, the Area Under the 
Curve (AUC) and the Receiver Operating Characteristics (ROC) were computed to estimate the performance 
of the proposed methodology. The results of classification are reported in the form mean ± standard deviation of 
the 10 cross validations in Table 2. All the methods report an accuracy above 75%, but there are deep differences 
when other parameters are considered. Both Random Forest (RF) and Extremely Randomized Trees (ERT) 
have the highest scores in terms of accuracy and specificity, but because of the low specificity score, they do 
not perform sufficiently for predicting true positives. Instead, both Boosted Trees (BT) and Logistic Regression 
(LR) provide the best scores for specificity without a great loss in terms of True Negative cases. In particular, 
we observe that BT has a higher value of accuracy, specificity and AUC than LR, at the small cost in terms of 
sensitivity, but since its standard deviation is smaller than LR, BT can be considered as the best model. Building 
sequential decision trees through bagging-boosting techniques has been proven helpful for this task. Further-
more, if we consider the ROC AUC score, the two aforementioned methods reported the best results, showing 
that such models have a good predictive power, even though the data set is unbalanced. As expected, all the 
optimized models report the highest ROC AUC value than the non-optimized values (except for the ERT). The 
results related to this application showed that there are some Supervised Learning Models, like in this case BT 
an LR, which can detect patterns which were peculiar only to the relatively few cases that develop CD.

The trained model can be used for future classification of PCD starting from the clinical data, giving an 
indication to the paediatrician in the domain of precise medicine.

Comparison with previous work on PCD.  In the previous paper1 a stepwise discriminant analysis was 
used to select variables able to differentiate children who became celiac from those who remained potential over 
8 years follow up. A Discriminant score (D-Score) was calculated by multiplying the normalized value of each 
variable included in the stepwise discriminant equation to its respective regression coefficient. From the score, 
the individual probability to be assigned to one or the other group was derived: we classified (predicted) the 
individuals into CD or not-CD group, using the selected variables, blinded to the final diagnosis.

In this work we are able to categorize PCD that can more likely develop CD using ML. Starting from the avail-
able dataset, the models are trained by the items and can be used for the outcome prediction. This overcomes the 
previously available linear model and proposes a novel classification of PCD based on ML.

Discussion
ML methods showed that some clinical and laboratory features have an important predictive power to forecast 
the development of villous atrophy. We wish to highlight this statement in order to guide the reader that could be 
sceptical about automatic indicators: what we found, is that the features selected by ML are roughly the same that 

Figure 4.   Cumulative feature importance. This graph was obtained by normalizing each feature relevance 
value by selecting a model for overall relevance and then by sorting the normalized relevance on the considered 
models. By using this methodology, the best selected features were chosen so that the Cumulative Importance 
Value (CIV), concerning the overall sum, reaches the value of 75%: the red line divides the selected features 
from the others. For the description of the features, see Table 1.
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give the important information in the linear model available in1, but the prediction that ML offers is significantly 
more accurate when compared to previous methods.

The issue of this domain of research is to support the clinical decision making for the management of potential 
celiac children at entry, based on informations/variables available at the first clinical and laboratory work up. 
Indeed, the majority of potential CD do not develop a full-blown disease within 8 years of follow up. Up to one 
third decrease the production of their main feature: the anti-human transglutaminase antibodies (Anti tTG2). 
On the other end, for the 30–35% who eventually develop villous atrophy over follow-up, an accurate prediction 
at time 0 (diagnosis) might prevent the progressive pathological process leading to a full small bowel mucosal 
destruction. We previously used a traditional multivariate approach to estimate, by a discriminant model, at 
diagnosis, which individual is more likely to develop villous atrophy over time, reaching an accuracy of prediction 
close to 70%. But the multivariate approach requires assumptions about the quality of variables used to develop 
the model which might be not fully appropriate to many clinical data. The independency of each variable by the 
other variables, which is a requirement for the best multivariate model is rarely respected: there is, at the end, at 
least a 30% misclassification. Alternatively, a hypothesis free method does not require a specific distribution of 
each variable neither it requires mutual independency of the variables. It may be finally simpler to fit the clinical 
judgement of the physician. For example, our trained BT (optimized) model can categorize PCD starting from 
the 19 selected features with an accuracy of 0.80, sensitivity of 0.58 and specificity 0.84.

This gives a clear indication to physician on the relevance of collecting data on genetic profile and infiltration 
of the Small Intestinal Mucosa for PCD and raises the question about the opportunity to put a child on gluten-free 

Table 1.   Feature description. Features are numbered in order of relevance, as obtained by feature selection 
and reported starting from the most important feature. The first 19 are the one selected for the classification 
process, a red line has been added to divide the selected features among the others. It can be noticed that the 
selected features include mainly features of the child (age, age at biopsy), his genetic profile and data related to 
the infiltration of the Small Intestinal Mucosa (including mucosal production of anti-tTG antibodies).

Feature Type Description

F1 Categorical Age group at diagnosis (grouped in below 3/between 3 and 10/ over 10): between 3 and 10 years

F2 Categorical Anti-tTG2 IgA deposit in duodenal mucosa at time of diagnosis: low positivity

F3 Categorical HLA haplotype: DQ2/DR7

F4 Categorical IL2/IL21 haplotype: GG

F5 Categorical Anti-tTG2 IgA deposit in duodenal mucosa at time of diagnosis (grouped in present/absent/weak): weak

F6 Categorical Age at first biopsy/diagnosis (grouped by integer age)

F7 Categorical IL12 haplotype: TT

F8 Categorical Height of villi in the first biopsy (grouped in normal/pathological/variable): variable

F9 Categorical SH2B3 haplotype: TT

F10 Categorical CCR haplotype: TC

F11 Categorical Intra-epithelial lymphocytes in first biopsy < 34 cells/mm2

F12 Categorical RGS1 haplotype: AC

F13 Categorical Anti-endomysium antibodies at the first biopsy (grouped in absent/present/weak/very weak/patchy): weak

F14 Numerical Gamma delta intra-epithelial infiltration in first biopsy

F15 Categorical OLIG3 haplotype: AG

F16 Categorical Villi/crypt ratio in first biopsy (grouped in normal/pathologic): normal

F17 Categorical Thyroiditis in family

F18 Categorical LPP haplotype: AC

F19 Categorical Inflammatory infiltration in the lamina propria (grouped in present/absent): present

F20 Categorical Depth of crypts in first biopsy (grouped in normal/pathologic): normal

F21 Numerical CD3 in crypts

F22 Categorical IL18RAP haplotype: TT

F23 Categorical TAGAP haplotype: TC

F24 Categorical REL haplotype: AA

F25 Categorical Marsh in first biopsy (grouped in M0/M1/M3): M1

F26 Numerical Anti-tTG2 value compared to the upper limit of the normal

F27 Categorical Celiac disease in family

F28 Categorical Villi/crypts ratio (grouped in normal/pathological): normal non è categorical?

F29 Categorical Sex: male

F30 Categorical SCHIP1 haplotype: AA

F31 Numerical CD25 infiltration in the lamina propria in the first biopsy

F32 Categorical Vitiligo in family

F33 Categorical Hypercholester in family

F34 Categorical Diabetes in family
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diet starting from these features before the development of the full blown CD. ML indications can move towards 
precision medicine also the detection of CD, as done in other diseases with similar workflows, as shown for the 
evaluation of cardiometabolic risk and risk of developing diabetes2–7,31–34.

Celiac Disease automated diagnosis is not new to computer-assisted systems, which have been explored since 
200835; spatial domain, transform domain, scale-invariant and and spatio-temporal features have been applied 
to several aspects of CD diagnosis, especially to the subjective interpretation of the intestine small mucosal 
immaginery36. But artificial intelligence, machine learning and deep learning do require large amount of data, 
in order to produce reliable results, and this is often one of the major caveat of clinical studies.

This work also presents some limitations. The relatively low number of data samples, with the outcome being 
unbalanced, and the lack of test samples from an external cohort are critical issues. It is indeed known that ML 
applied to small, sparse and heterogeneous data is challenging in terms of model contextualization, validation 
procedure and the classification accuracy. Moreover, about the limitations of the proposed ML workflow, we 
are working on a semi-automatic strategy of hyperparameter tuning in both the feature selection scheme and 
the classification phase, since not all the possible combinations of hyperparameters have been tested. Strategies, 

Figure 5.   Feature contribution to the four models. In this graph, the thickness of the grey lines indicates 
how much the feature impacts the results obtained by the model. For legend on the models, see Fig. 3, for the 
description of the features, see Table 1.

Table 2.   Classification results. TP = true positive, TN = true negative, FP = false positive and FN = false 
negative. The results of classification are reported in the form mean ± standard deviation of the parameters 
obtained by 10 cross validations. All the methods report an accuracy above 75%. Specificity also is always 
above 75%, with two of the considered methods over the 98%, while the best performance in terms of 
sensitivity is 60%. Then, the Area Under the Curve and the Receiver Operating Characteristics are reported to 
estimate the performance in terms of accurate classification of the proposed methodology. For all results, the 
best-obtained scores are highlighted in bold. For the ROC AUC score, two methods (BT & LR) report better 
results, showing that such models have a good predictive power even though the data set is unbalanced. As 
expected, all the optimized models report the highest ROC AUC value than the non-optimized values (except 
for the ERT), due to the hyperparameter tuning.

Model
Accuracy
(TP + TN)/N

Sensitivity
TP/(TP + FN)

Specificity
TN/(TN + FP) ROC AUC​

RF 0.84 ± 0.04 0.06 ± 0.12 0.98 ± 0.03 0.52 ± 0.06

RF (optimized) 0.83 ± 0.05 0.22 ± 0.21 0.94 ± 0.05 0.58 ± 0.11

ERT 0.86 ± 0.03 0.16 ± 0.18 0.98 ± 0.03 0.57 ± 0.09

ERT (optimized) 0.85 ± 0.03 0.06 ± 0.12 0.98 ± 0.02 0.52 ± 0.05

BT 0.81 ± 0.07 0.38 ± 0.17 0.89 ± 0.07 0.63 ± 0.10

BT (optimized) 0.80 ± 0.08 0.58 ± 0.18 0.84 ± 0.08 0.71 ± 0.09

LR 0.77 ± 0.07 0.58 ± 0.20 0.80 ± 0.08 0.67 ± 0.10

LR (optimized) 0.75 ± 0.08 0.60 ± 0.24 0.78 ± 0.10 0.69 ± 0.11
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like the usage of the cross validation for the choice of the best hyperparameters in both feature selection and 
classification, should allow improving the model performance.

 Data availability
The study was carried out according to the Helsinki II Declaration and was approved by the Ethical Commit-
tee of the School of Medicine of the University of Naples Federico II, Protocol n. 191/06. The present research 
involving human participants under the age of 18 years (including donors of tissue samples). Each parent (and/
or legal guardian) gave a fully informed consent to the participation of their child to the study and to the use 
of their biological samples for research purpose. The form is available on request at ’r.auricchio@unina.it’. The 
datasets analysed during the current study are available from the corresponding author on reasonable request.
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